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Abstract
Lyra is an automated market maker for trading
options on Ethereum. Successful market making
depends on the ability to price options accurately
and to effectively measure and manage risk.

Two recent developments have made it possible to
implement a traditional approach on-chain. The first
is the advent of layer two, which makes computing
aggregate risk practical. The second is the maturity
of liquid spot markets, which enables protocol-to-
protocol, or "composable" hedging of risk.

1 Introduction
In this paper, we present Lyra, a novel automated
market maker (AMM) for trading European
options. Prior attempts to build an options AMM
on-chain have faltered due to either blunt, high-
fee mechanisms or unacceptable risk incurred by
liquidity providers (LPs). The former leads to
untradable prices and low volumes, the latter causes
the LP’s probability of ruin to approach 100% over a
long-term time horizon.

Autonomously undertaking hedging actions based
on the net Greek exposure of the LP’s is the defining
idea that drives the sustainability of Lyra over the
long term. This is achieved by:

• Market driven pricing : Options are accurately
priced using market based, strike-adjusted
implied volatilities (IV s) applied to a Black
Scholes model. This returns the theoretical
value (W ).

• Vega Risk Management : Charge an asymmetric
spread around W based on whether a given
trade increases or decreases the LP’s vega risk.

• Delta Risk Management : Hedge the LP’s net
delta by trading the underlying asset on a spot
market.

Section 2 discusses the fundamentals of options
trading, its associated risks, and AMMs. Section
3 outlines Lyra’s pool structure for LPs. Section 4

describes the mechanism for determining the IV
that the AMM uses to price options. Section 5
describes how the AMM calculates and manages
risk for LPs. Section 6 describes the final price
offered to traders. Appendices A and B provide
a mathematical description and examples of the
mechanism and how it behaves in response to
trading. Appendix C proposes a more efficient
pricing mechanic for future versions of Lyra.

2 Risk and Options
Fundamentals

In this section, we outline the basic principles of
options trading by introducing the Black Scholes
model alongside the well known "options Greeks".
We then briefly discuss recent developments in
decentralized finance (DeFi), namely AMMs and
how they can be used to facilitate options trading.

2.1 Options

A European option is a contract between two
parties that gives the purchaser the right, but not
the obligation, to buy (calls) or sell (puts) the
underlying asset for a certain price (strike K) on a
certain date (expiry T ). Options allow traders to
manage risk, obtain leverage, and construct desired
payoff structures. The price of an option, denoted
W , is computed using the Black Scholes model. The
model takes 5 key parameters:

1. Time to expiry (T − t), where t is the present
time

2. Risk free interest rate (r)

3. Price of the underlying asset at present time t
(St)

4. Strike price of the option (K)

5. Implied annualized volatility of the underlying
asset (IV )
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Options markets are driven by disagreements about
the volatility of the underlying asset until the time
to expiry. Assuming there is a liquid spot market,
every options trade can be transformed into a bet
on volatility by trading the underlying asset (delta
hedging). It is therefore crucial for any options
protocol to determine an equilibrium level for
volatility per option.

Options require active risk quantification and
management across multiple dimensions. These
dimensions are defined mathematically by the
Greeks, which quantify the sensitivity of an option’s
value to changes in the Black Scholes parameters
(holding all others constant).

The two key Greek risks to manage are:

• Delta ∂W
∂S : the change in the price of an option

given a $1 move in the underlying asset.

• Vega ∂W
∂IV : the change in the price of an option

given a 1% point change in IV .

Other Greeks include:

• Gamma ∂2W
∂S2 : the change in an option’s delta

given a $1 move in the underlying asset.

• Theta ∂W
∂t : the amount by which an option’s

value declines per day that passes.

• Rho ∂W
∂r : the change in the price of an option

given a 1% point change in the risk-free interest
rate.

These last three Greeks are secondary to delta
and vega in risk terms, since by managing delta and
vega we are respectively balancing our exposure to
gamma and theta. Rho risk is typically of much
smaller magnitude than the others as the risk-free
rate tends to be fairly stable.

2.2 Automated Market Makers

AMMs are agents that pool liquidity and make
it available to traders according to an algorithm
[5]. The smart contract paradigm introduced by
Ethereum - in which code can store value and
transform it programatically - has enabled the rise of
AMMs. LPs deposit funds trustlessly and participate
as market makers, according to the functions defined
in the smart contracts. Traders have permissionless
access to buy and sell the underlying product.
Decentralised AMMs have been able to efficiently
aggregate liquidity, improving the trading experience
across many types of assets and products. However,
LPs incur the risks of market making, known as
"impermanent loss" (IL). Trading fees must exceed

IL, which occurs when the fees from uninformed flow
exceeds losses incurred from toxic flow as described
in [3].

2.3 Options and AMMs
Options are leveraged, volatile products that
incur large risks along multiple dimensions. This
is why current AMM designs for other markets,
whilst instructive, cannot be directly mapped to
options. Existing options AMMs attempt to deal
with this complexity by increasing fees to levels
which almost certainly protect LPs, but result in
extremely high prices and little trader interest. This
tension is resolved in traditional finance through risk
management techniques, allowing market makers to
quote competitive prices whilst ensuring that they
maintain high risk-adjusted returns.

A successful options AMM should emulate this
process, hedging risk to enable competitive pricing.
Delta hedging smooths the exposure of the AMM
to a large directional move in the underlying asset.
This is combined with an asymmetric spread which
incentivizes trades that hedge the AMM by charging
a fee that is skewed according to its current vega risk
exposure.

In the next section we begin to describe Lyra’s
architecture as an AMM, introducing the liquidity
pool structure and the process by which new expiries
are listed.

3 Pool Structure
Lyra will accept a stablecoin as collateral, and will
offer options in rounds. A round is defined as a
28 day period, with options tradable for 4 discrete
expiries within that time (7, 14, 21, and 28 days
from the commencement of the round). The liquidity
will be split into two sub-pools:

1. Collateral pool: Collateralizes options and
pays/receives premiums.

2. Delta pool: Hedges the delta exposure of the
AMM by trading the underlying asset.

In the next section we describe the AMM’s
mechanism for determining a theoretical price for
an option (W ) through dynamic (IV ) and skew
parameters.
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4 Options AMM

The goal for an options market maker is to find an
IV value at which demand roughly equals supply. In
this situation the AMM can collect fees on trades
without taking on risk itself, as it is buying and
selling options in equal amounts. The AMM is
designed to respond to supply/demand to reach this
IV level efficiently. This market-derived IV value
is then used to calculate the Black Scholes price of
an option (W ). The logical flow of the mechanism is
outlined in Figure 1. A mathematical description
of the volatility and skew impact mechanisms
is provided in Appendix A, with a geometric
visualization presented in Appendix B.

4.1 Initialization

When an expiry Tj is listed on Lyra, a baseline
volatility value IVj will be initialized along with
ratios of the listed strike volatilities to IVj . These
initial values will be derived from current market
data, with IVj taken from the 50 delta (at-the-
money) strike. Following initialization, both IVj
and the strike volatility ratios (skew) will be
determined by the supply and demand for options
for a particular strike and for its associated expiry.

4.2 Standard Size

It stands to reason that the price impact of a trade
is proportional to its size. An individual buying 100
options will likely cause the price to move higher
than had they bought a single contract. The AMM
captures this effect through the notion of a standard
size (SS) which allows it to contextualize each trade
and alter its pricing parameters in proportion to
a trade’s size. Standard size and the number of
contracts traded are linearly related with a constant
of proportionality χ. That is:

N = χn (1)

where N is the number of contracts in a trade, n
is the number of standard sizes and χ is a constant
initialized when options are listed.

We initialize the SS according to the vega of the
at-the-money strike for the 7 day out expiration,
given an initial volatility level derived from current
market data. The SS will be proportional to vega,
with assets supporting options with higher vegas
resulting in a lower SS. The lower the SS, the more
sensitive IV will be to a given trade, and vice versa.

Figure 1: Lyra mechanism flowchart.
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4.3 Volatility Impact

For every SS that the AMM buys or sells in a given
expiry, the baseline IV will increase or decrease
respectively for that expiry by 1 percentage point.
That is:

IVnew =

{
IVold + 1% pool sells 1 SS
IVold − 1% pool buys 1 SS

(2)

In this way, the mechanism converges to an IV
level which denies arbitrage opportunities as fast as
possible. If the order flow which the AMM trades
against leads to an IV level which contradicts other
venues, arbitrageurs can trade against the AMM to
bring IV (and prices) in line.

4.4 Skew Impact

The Black Scholes model does not account for the
effect of strike on IV , resulting in the volatility smile
which typically arises in options markets. This effect
is also known as the skew of an option. The AMM
incorporates skew into its pricing using a similar
mechanism to volatility. We define the skew ratio
SRi,j as the ratio of IV of a given strike Ki (IVi,j)
to the baseline IV for the same expiry IVj :

SRi,j =
IVi,j
IVj

(3)

Adjusting the skew ratios for each strike accounts
for changes in strike volatility. The volatility input
for the Black Scholes equation is specific to a strike
(Ki), expiry (Tj) combination.

As an example, if the June base IV (IVJune)
equals 120%, and the June 1900 call (30 delta) has
an IV of 130%, the initial skew ratio is 130/120
= 1.0833. If the IVJune increases by 1 point, the
June 1900 volatility will increase by 1.0833%. By
adjusting these ratios up and down based on the
supply/demand for a given strike, the AMM can
accurately quote options prices using a Black Scholes
model.

For every SS bought (sold) by a trader for strike
Ki, the mechanism will increase (decrease) the skew
ratio SRi,j by a constant cr that will be initialized
as 0.0075. That is:

(SRi,j)new =

{
(SRi,j)old + cr Pool sells 1 SS
(SRi,j)old − cr Pool buys 1 SS

(4)

Continuing the above example, if the initial
SR1900,June is equal to 1.0833 and a trader
purchases 1 SS worth of 1900 calls or puts, this ratio

will increase to 1.0833 + 0.0075 = 1.0908. This ratio
will then be multiplied by the post-impact IVJune
to obtain the IV used in Black Scholes equation.
Rearranging (3) gives us the trade’s volatility in
terms of the skew ratio and baseline volatility:

IVi,j = SRi,j × IVj . (5)

All option listings and expiries can be represented in
matrix form, as shown in Appendix A, Definition 6.

4.5 Impact Illustration

As an example, Figure 2 plots the volatility versus
the number of standard sizes bought/sold by a
trader for an option with K = 2400 and T = 7. This
impact is quadratic, as demonstrated in Appendix
A, Lemma 1. This is because the AMM is increasing
both the IV and skew of an option, which are then
multiplied together to create the parabolic curves.

Figure 2: As the AMM sells options the volatility
curve is shifted up (magenta to solid purple).
Similarly, buying options will lower the volatility
curve (magenta to dashed purple).

4.6 Fair Option Price

Now that we have an appropriate IV input to the
Black Scholes equation, we calculate the fair price
of the option (W ). The Black Scholes price of the
option for strike Ki and expiry Tj is given by:

W =

{
N(d1)St −N(d2)Kie

−r(Tj−t) if call
N(−d2)Kie

−r(Tj−t) −N(−d1)St if put
(6)

Where

d1 =
1

IVi,j
√
Tj − t

[ln(
St
Ki

)+(r+
(IVi,j)

2

2
)(Tj−t)] (7)

d2 = d1 − IVi,j
√
Tj − t (8)
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5 Calculating and Managing
Pool Risk

We now have an AMM which determines IV , and
can accurately price options using Black Scholes.
However, without active risk management, LPs are
subject to IL and a greatly increased probability
of ruin. The net delta and vega positions define
the risk profile, allowing for hedging actions to be
undertaken when exposure is unacceptably high.
This allows the AMM to continue to price options
competitively over a long time horizon.

5.1 Delta Risk

Recall that the delta risk defines the exposure of an
options position to moves in the underlying asset.
Specifically, the delta risk for an AMM is defined
as the dollar amount the AMM’s position value
increases (if long) or decreases (if short) given the
price of the underlying asset increases by $1.

5.1.1 Calculating Delta Risk

1. Given the current price of the asset St and the
IV for each strike Ki in each expiration Tj ,
calculate the delta (δ) using the formula:

δi,j = N(d
(Ki,Tj)
1 ) (9)

where d1 is as defined in (7) and N(·) is the
cumulative standard normal distribution. The
net position for the (Ki, Tj) pair, denoted by
ρi,j is the number of contracts the AMM is long
(negative if the AMM is short).

2. Calculate the delta exposure Ei,j for a given
strike Ki within a given expiry Tj as:

Ei,j = δi,j × ρi,j (10)

3. Sum the delta exposures for each strike (nX
total), expiry (nY total) combination to
calculate net delta (∆):

∆ =

nX∑
i=1

nY∑
j=1

Ei,j (11)

To calculate the delta exposure of the AMM in $
terms (E$), multiply net delta by the current asset
price St:

E$ = ∆× St (12)

5.1.2 Managing Delta Risk

The AMM will hedge a given net delta position ∆
by buying, selling or short selling the underlying
asset on a spot exchange. This action is triggered
by external actors who are incentivized to make
valuable calls to the protocol, with minimum delta
risk thresholds implemented.

5.2 Vega Risk
Recall that the vega risk defines the exposure of
an options position to moves in the IV of the
underlying asset. Specifically, the vega risk for an
AMM is defined as the dollar amount the AMM’s
position value increases (if long) or decreases (if
short) given the IV of the underlying asset increases
by 1% point.

5.2.1 Calculating Vega Risk

Having a metric for vega risk is more involved than
for deltas. Simply summing up the vega across
expiries ignores the time-dependent risk profile of
vega. In practice, the risk from an option where
IV = 120% expiring in 2 years is very different
from one expiring in 24 hours. This motivates the
following definition for a StandardVega (Ω) which
uses a normalization factor (Nj) per expiry Tj :

Ωi,j = vegai,j ×Nj (13)

where Nj =
√

30
Tj−t , Tj − t is the number of days to

expiry. The parameter Nj normalizes vega to the
same expiry chosen as 30 days away [1], allowing
for a valid comparison of vega across expiries. To
calculate the overall risk of the AMM in Ω terms,
we now repeat an algorithm similar to the delta risk
summation:

1. Given the current price of the asset St and the
IV for each strike Ki in each expiration Tj ,
calculate the vega:

vegai,j = StN
′(d

(Ki,Tj)

1 )
√
Tj − t (14)

where d(Ki,Tj)
1 is defined in (7).

2. Multiply vegai,j by the net position of the
AMM (ρi,j) and the normalization factor Nj to
calculate the standard vega exposure of option
Ei,j :

Ei,j = vegai,j × ρi,j ×Nj (15)

3. Sum the standard vega exposures for each strike
(nX total), expiry (nY total) combination to get
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the net standard vega Ψ:

Ψ =

nX∑
i=1

nY∑
j=1

Ei,j (16)

To hedge vega risk we first need to contextualize the
AMM’s net standard vega exposure by comparing
it to the AMM’s available liquidity. During a trade,
this is calculated as follows:

Define normalized vol as the net standard vega
(Ψ) of the AMM multiplied by the post impact IV
value of a trade (IVi,j) for a strike Ki and an expiry
Tj .

NormV ol = ΨIVi,j (17)

For example, if the post impact IVi,j is 150 vol,
and we are net short 500 vega the AMM’s NormVol
for the trade is equal to -75,000. A 10% increase
(15 percentage point increase) in IVi,j would lead
to NormVol increasing to

165×−500 = −82, 500

and the AMM will approximately incur $7,500 in
impermanent losses. This impermanent loss can be
realized if the LPs have options sold to them at this
new IVi,j level, all other variables held equal. For
example if the AMM sells a call with $2 of vega at
150 vol and buys it back for 165 it has realized a loss
of:

$2× (165− 150) = $30

We can now define vega utilization at time t as a
means to quantify in dollar terms the risk of changes
in IV to the AMM. Vega utilization (V Ut) is a 20%
change in NormVol as a percentage of the size of the
collateral pool (Ctotal)

V Ut =
0.2×NormVol

Ctotal
. (18)

This will factor in the change in collateral from the
price of options in the proposed trade.

Continuing the above example, if the LP has
$800,000 in the collateral pool:

V Ut = 15, 000/800, 000 = 1.875% (19)

5.2.2 Managing Vega Risk

The AMM manages its vega risk by incorporating its
vega exposure (defined in vega utilization terms) into
the fee charged to a trader. This fee is defined as:

f = A×W +B ×H × V U + C × St (20)

where A, B and C are coefficients that will be
initialized closer to launch and eventually governed

by the community. The parameter H is equal to 0
if the trade brings the absolute value of the AMM’s
net standard vega closer to 0, and 1 otherwise. St is
the price of the underlying asset, and C represents
the % fee associated with collateralizing and delta
hedging on a spot exchange. Breaking this fee down
into its components we have:

• A flat fee based on the option price.

• A dynamic vega risk component.

• A flat fee for exchange costs.

6 Final Price
The final price per option (F ) offered to the trader
is:

F = W ± f (21)

where W is the Black Scholes price of the option
obtained in section 4.6, and f is the fee computed
in section 5.2.2. We add the fee if the trader buys
the option and vice versa. The fee (f) mechanism
assesses the current risk of the liquidity pool’s
position in vega terms (outlined in section 5.2.1) and
determines whether the trade a trader is proposing
will increase the AMM’s risk, and charge a higher fee
if so.

For example, consider if the AMM is net short
options, and a trader comes in to trade an option
where W = $125. If the trader was a buyer, the
trade would increase the risk of the AMM, and vice
versa if they are a seller. As such, the AMM would
charge a larger fee if they were a buyer. This would
manifest in an asymmetric market around $125, with
the trader paying $140 (f = $15) for the option
and selling it at $120 (f = $5), making it relatively
more expensive to buy than sell. Combined with IV
slippage, this penalizes users who continue buying
with a higher fee relative to users who sell. The
AMM either achieves more balanced flow (i.e. having
both buyers and sellers trade with the protocol) or
charges a large enough fee to compensate LPs for the
increased risk.
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Appendices
A Mathematical Formalism
In the remainder of this paper we present the basic
framework which we will eventually use to rigorously
prove the features and advantages of the protocol.
Future work will expand on what is shown here. For
simplicity, we consider the case with only one asset
(say, ETH) offered by the liquidity pool since the
pricing mechanism treats all assets independently.
Suppose Lyra offers nX total strike prices Ki, i =
1, . . . , nX with Kα < Kβ if α < β and nY possible
expiries Tj , j = 1, . . . , nY . Here Tj corresponds
to the date of a particular expiry. For instance T1
could be the 1st of May 2021. Each expiry does not
necessarily offer the same number/type of strikes.

Example 1. The May 1 expiry may offer 2000,
2200 strikes on ETH but the May 28 expiry can offer
these in addition to a 2500 strike.

Definition 1. We call K ∈ RnX the strike vector
and T ∈ RnY the expiry vector. Each pair (Ki, Tj)
is called a valid listing if Lyra offers the strike Ki

with expiry Tj , otherwise it is an invalid listing.

To each (Ki, Tj) we assign a scalar Ri,j ∈ R that
accounts for the effect strike price has on the implied
volatility.

Definition 2. We call Ri,j the skew ratio for the
listing (Ki, Tj).

Suppose that the expiry vector T is ordered in
increasing size, i.e. if T = (T1, . . . , TnY

) then
T1 < T2 < · · · < TnY

. To each expiry we assign
an implied volatility bj which is initialized as the
implied volatility for an approximate 50 delta option
with the same expiry.

Definition 3. The implied volatility bj assigned to
an expiry Tj is called the baseline volatility for
that expiry.

Without loss of generality, suppose nX ≥ nY (i.e.
there are more strikes than expiries). Let R be the
nX × nY matrix whose (i, j) entry is the skew ratio
for the listing (Ki, Tj), i.e.

R :=

 R1,1 . . . R1,nY

...
. . .

...
RnX ,1 . . . RnX ,nY

 .

If the listing corresponding to the entry Ri,j is
invalid, then Ri,j = 0. Let V be the nY ×nY diagonal
matrix V := diag(b1, . . . , bnY

).

Definition 4. We call R the ratio matrix and V
the baseline matrix.

Example 2. Suppose there are 2 possible expiries
on ETH: May 1 and May 7 and the former offers
strikes 2000 and 2200 while the latter offers these
same strikes in addition to 2500. A possible ratio
matrix R is

R =

1.05 1.06
1.1 1.12
0 1.4

 . (22)

Note that R3,1 = 0 since there is no 2500 strike for
the May 1 expiry.

Definition 5. The trading volatility (referred to
as the volatility) σi,j of the listing (Ki, Tj) is given
by

σi,j = bjRi,j . (23)

The trading volatilities are used to compute the
fair price of an option using Black Scholes. We
encode all trading volatilities in the volatility matrix.

Definition 6. The volatility matrix V
corresponding to ratio matrix R and baseline matrix
V is the nX × nY matrix V := RV, i.e.

V =

 σ1,1 . . . σ1,nY

...
. . .

...
σnX ,1 . . . σnX ,nY

 .

Example 3. Suppose that the baseline volatilities
for the May 1 and May 7 expiries are 1.2 and 1.4
respectively. The baseline matrix is diag(1.2, 1.4).
Combining this and (22) gives the volatility matrix

V =

 1.26 1.484
1.32 1.568

0 1.96

 . (24)

For instance, the trading volatility of a 2200 strike
with expiry May 7 is given by the (2, 2) entry of
(24).

Both the ratio and baseline matricies evolve with
each trade conducted. We use superscripts to label
the evolution of a quantity, i.e. R(0)

α,β indicates the

initial skew ratio of the (Kα, Tβ) listing while R(1)
α,β

denotes the same quantity after one trade and so
forth.

Definition 7. A trade Ti,j(n) of n standard sizes of
the listing (Ki, Tj) is the map

Ti,j(n)
(
R

(0)
α,β , b

(0)
β

)
= (R

(1)
α,β , b

(1)
β ) (25)
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where

(R
(1)
α,β , b

(1)
β ) =


(R

(0)
α,β + crn, b

(0)
β + cbn) (α, β) = (i, j)

(R
(0)
α,β , b

(0)
β + cbn) α 6= i, β = j(

R
(0)
α,β , b

(0)
β

)
β 6= j.

(26)
Here cr is a parameter initially set to 0.0075 and
cb = 0.01. The sign of n is positive if the AMM is
selling an option and negative otherwise.

From (26), it is easy to see that we have the
following.

Lemma 1. Let V (0) be the original volatility matrix
with entries σ(0)

α,β. Suppose a trade of n standard
sizes of the listing (Ki, Tj) is conducted. This will
transform V (0) → V (1) as follows

Ti,j(n)
(
σ
(0)
α,β

)
= σ

(1)
α,β(n)

where
σ
(1)
α,β(n;σ

(0)
α,β) = σ

(0)
α,β + Z

(0)
α,β(n) (27)

with

Z
(0)
α,β(n) =


θ(0)n+ φn2 (α, β) = (i, j)

ξ(0)n α 6= i, β = j

0 β 6= j

(28)

and (θ(0), φ, ξ(0)) = (cbR
(0)
i,j + crb

(0)
j , cbcr, cbR

(0)
α,j).

Note that (27) also takes in parameters R(0)
α,β and

b
(0)
β , but this is implicit when writing σ(0)

α,β.

Definition 8. We call σ(1)
α,β(n) the volatility curve

of the listing (Kα, Tβ) when a trade of n standard
sizes is made of the (Ki, Tj) listing.

Example 4. Continuing the previous examples,
suppose Alice purchases 10 standard sizes of the
2200 strike with May 7 expiry. This updates the
ratio and baseline matricies to

R(1) =

1.05 1.06
1.1 1.195
0 1.4

 V(1) =

(
1.2 0
0 1.5

)

(updated values bolded for emphasis). Recomputing
(24) gives

V (1) =

 1.26 1.59
1.32 1.7925

0 2.1

 . (29)

Note that all entries of the second column (i.e. May
7 expiry) have been increased but the second entry
more so. This agrees with (28); the volatility of the

listing (Ki, Tj) transforms quadratically with n while
all other volatilities sharing the same expiry (i.e. in
the same column) change linearly. All entries outside
of column j are unaffected by the trade.

Remark 1. We can interpret the changes in volatility
geometrically as follows. Suppose Alice buys n1
standard sizes of the (Ki, Tj) listing with original
baseline volatility b(0), skew ratio R(0) and trading
volatility σ(0) = b(0)R(0). Her volatility curve is
given by

σ(1)(n1;σ(0)) = σ(0) + θ(0)n1 + φn21 (30)

where θ(0) and φ are as defined earlier. If Bob
then buys n2 standard sizes of the same listing, his
volatility curve would be

σ(2)(n2;σ(1)) = σ(1) + θ(1)n2 + φn22 (31)

where θ(1) = cbR
(1) + crb

(1). Thus, Alice’s trade
transforms the volatility curve from (30) to (31). We
represent this in Figure (3). The volatility curve is
originally the red parabola and the current trading
volatility σ(0) of the (Ki, Tj) listing is the y intercept
of said curve. After h er purchase of n1 standard
sizes, the volatility curve transforms to the blue line
and σ(0) is updated to σ(1) (i.e. the y intercept is
shifted up). Note that the red and blue curves are
not simple vertical shifts of one another. Similarly,
Bob’s purchase of n2 standard sizes transforms
the blue to the green curve and also updates the
trading volatility to σ(2). This result could also have
been achieved if Alice originally bought n1 + n2
standard sizes. That is, the volatility curve is path
independent. Similar arguments apply when Alice
and Bob trade listings different strikes and/or
expiries.

Figure 3: As the AMM sells options the volatility
curve is shifted up (red to blue, blue to green).
Similarly, buying options will lower the volatility
curve.

Example 5. From the previous examples we know
that a trade of 10 standard sizes of the (2200,May 7)
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listing will impact the volatilities of all listings
that share that same expiry. In Figure (4) we show
in red/blue the original volatility curves before
Alice’s purchase for the 2200 and 2500 strikes. After
her purchase, these are all shifted up to the solid
orange/cyan lines as described by (31). If Alice were
to then sell 20 standard sizes, these curves would
shift down to their respective dashed lines. This
same result could be achieved had she originally sold
10 standard sizes (volatility is path independent).
Note that a) are all parabolic curves while b) are
all linear. A similar plot to b) can be drawn for the
2000 strike.

B Geometric Connections

Lyra’s mechanism appears significantly different to
other well known AMMs (Uniswap, Balancer, etc).
This is no surprise, since these examples facilitate
the exchange of assets (tokens, coins) instead of
derivatives of those assets. In the case of Uniswap,
the dynamics from each trade are encoded in the
curve xy = k where x and y are the quantities of
tokens X and Y in the pool. This begs the question
for Lyra: what is analogous to Uniswap’s curve?

In this section we observe that there is a
geometric meaning to Lyra’s Black Scholes pricing
mechanism encoded in what we call the Black
Scholes curves. These are simply related to the
volatility curves discussed in the previous section.
Due to this, we believe that some results about
AMMs known in the literature can be adapted to
our circumstances, see e.g. [4]. In future work we
hope to rigorously prove such connections exist.

For simplicity, we focus on call options since
analagous statements can easily be made for puts. If
Alice trades n standard sizes of the (Ki, Tj) listing
with original volatility σ(0)

i,j , then the price she
pays for one contract is given by the Black Scholes
formula

Ci,j = N(d
(i,j)
1 )St−N(d

(i,j)
2 )Ki exp(−r(Tj−t)). (32)

Here

d
(i,j)
1 =

1

σ
√
Tj − t

[
ln

(
St
Ki

)
+

(
r +

σ2

2

)
(Tj − t)

]
,

(33)
d
(i,j)
2 = d

(i,j)
1 − σ

√
Tj − t, St is the spot price at

time t, r is the interest rate (assume fixed, small)
and σ := σ

(0)
i,j + Z

(0)
i,j (n) is the volatility for a trade of

n standard sizes. We observe that when Alice comes
to buy from the AMM, all parameters other than n
are fixed. Thus, we can treat (32) as a function only

of n and parameterised by the current volatility σ(0)
i,j ,

i.e. Ci,j = Ci,j(n;σ
(0)
i,j ).

Definition 9. We call the curve Ci,j the Black
Scholes Call (BSC) curve for the listing (Ki, Tj).
The BSC curve for an invalid listing (Kα, Tβ) is
trivial, i.e. Cα,β = 0. We encode the BSC curves
for all listings in the call matrix

C :=

 C1,1 . . . C1,nY

...
. . .

...
CnX ,1 . . . CnX ,nY

 . (34)

A similar matrix can be constructed for puts and we
call this the put matrix.

Let C(0) be the original call matrix and C(1) the
updated matrix after a trade of n standard sizes
worth of contracts of the listing (Ki, Tj). By a
similar argument used for the volatilites, we have
the following.

Lemma 2. Suppose n1 standard sizes of the
listing (Ki, Tj) is traded by the AMM and the call
matrix C(0) has entries Cα,β(n;σ

(0)
α,β). Then the

entries of the updated call matrix C(1) are given by
Cα,β(n;σ

(1)
α,β(n1)) where

σ
(1)
α,β(n1) = σ

(0)
α,β + Z

(0)
α,β(n1). (35)

It is easily shown that like the volatility curves,
each trade serves to shift the BSC curve up or down
as described in Remark 1. Specifically, we observe
that Cα,β(0;σ

(0)
α,β) is the present cost of one option

for the (Kα, Tβ) listing and Cα,β(0;σ
(1)
α,β) is the price

after one trade.

Figure 4: Trading volatilities for the May 7 expiry
with strikes (a) 2200 and (b) 2500.
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Figure 5: BSC curves for the May 7 expiry with
strikes (a) 2200 and (b) 2500.

Example 6. Let us continue the previous
example where Alice buys 10 standard sizes of
the (2200,May 7) expiry. The BSC curves for the
2200 and 2500 strikes are shown as solid red/blue
curves in Figure (5) a) and b) respectively. After
Alice’s purchase, all curves are shifted up to the
solid orange/cyan lines. Note, however, that the red
curve is shifted by more than its blue counterpart.
In both cases, when another individual, Bob, comes
to trade with the AMM, he will be paying more to
buy the same number of contracts as Alice. If Alice
were instead to sell 10 standard sizes to the AMM
then the original curves would shift down to their
dashed counterparts. We plot for 100 standard sizes
in both directions to highlight the curvature of each
C(n).

We now have a geometric meaning behind Lyra’s
Black Scholes mechanism; trades transform the
volatility curve (Figure (4)) and this translates to
an evolution of the Black Scholes curves (Figure (5)).
The deformations of these curves seems analogous
to the concept of reachable sets described in [2].
Further research is needed to make this connection
more rigorous. In the final section of this paper we
look at a method for improving the Black Scholes
pricing method.

C Pricing Efficiency
We now propose an improvement to the Black
Scholes pricing mechanism. Without loss of
generality, we assume the AMM is selling options.
A similar argument applies if the AMM were to buy
instead. Suppose Alice purchases nf standard sizes
of the listing (Ki, Tj) and the Black Scholes curve
at the present moment is C(n). Since the number
of contracts is a scalar multiple of the standard size
(i.e. N = χnf ), then the total price Alice pays for
her N contracts is given by

F = χnfC(nf ). (36)

Geometrically, the price Alice pays is proportional
(up to a factor of χ) to the area of the dotted

rectangle depicted in Figure (6) a). This is a sub
optimal pricing since (in the absence of fees and
gas) to minimise F , one would ideally trade an
infinitesimal amount dn until one has purchased the
desired nf standard sizes. The cost of this optimal
strategy is

FOptimal = χ

∫ nf

0

C(n)dn. (37)

In Figure (6) a) this is the shaded area under the
curve. The difference between the crude (36) and
optimal fees (37) becomes significant for large trades
and so leads to unnecessarily high fees.

Due to computational constraints, the idealised
situation in (37) is not feasible. Instead, a
compromise can be reached by performing an upper
Riemann integral (a lower sum would lose the
AMM money) with η rectangles (Figure (6) b)).
Specifically, we have

FApprox = χ

η∑
k=1

C(k∆n)∆n

where ∆n =
nf

η . Preliminary testing leads us to
believe η = 3 is sufficient for most purposes.

Figure 6: a) The optimal price Alice pays is
proportional to the shaded area. b) An upper
Riemann sum gives a much better price.
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